Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dependence of the luminescence energy in InGaN quantum-well structures on applied biaxial strain

Identifieur interne : 011990 ( Main/Repository ); précédent : 011989; suivant : 011991

Dependence of the luminescence energy in InGaN quantum-well structures on applied biaxial strain

Auteurs : RBID : Pascal:01-0020283

Descripteurs français

English descriptors

Abstract

Direct application of biaxial strain to GaN and InGaN/GaN multiple quantum-well (MQW) structures is achieved through the use of a specially designed pressure cell. The photoluminescence of the samples is measured as a function of the applied biaxial strain. The luminescence of the GaN sample redshifts with tensile strain in a manner that agrees quantitatively with the expected shrinkage of the energy gap. The luminescence of the InGaN MQW structures shows a smaller than expected redshift for one sample, and a blueshift for another. This blueshift agrees with calculations based on the built-in electric field and the piezoelectric effect in a quantum well in which the radiative recombination is dominated by the quantum-confined Stark effect.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0020283

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dependence of the luminescence energy in InGaN quantum-well structures on applied biaxial strain</title>
<author>
<name sortKey="Shapiro, N A" uniqKey="Shapiro N">N. A. Shapiro</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>High Pressure Research Center Unipress, ul. Sokolowska 29/37 01-142 Warszawa, Poland</s1>
</inist:fA14>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>High Pressure Research Center Unipress, ul. Sokolowska 29/37 01-142 Warszawa</wicri:regionArea>
<wicri:noRegion>ul. Sokolowska 29/37 01-142 Warszawa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>APA Optics, Blaine, Minnesota 55449</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>APA Optics, Blaine</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Feick, H" uniqKey="Feick H">H. Feick</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Weber, E R" uniqKey="Weber E">E. R. Weber</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Perlin, P" uniqKey="Perlin P">P. Perlin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yang, J W" uniqKey="Yang J">J. W. Yang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Akasaki, I" uniqKey="Akasaki I">I. Akasaki</name>
</author>
<author>
<name sortKey="Amano, H" uniqKey="Amano H">H. Amano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0020283</idno>
<date when="2000-12-15">2000-12-15</date>
<idno type="stanalyst">PASCAL 01-0020283 AIP</idno>
<idno type="RBID">Pascal:01-0020283</idno>
<idno type="wicri:Area/Main/Corpus">011F40</idno>
<idno type="wicri:Area/Main/Repository">011990</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>Piezo-optical effects</term>
<term>Quantum confined Stark effect</term>
<term>Red shift</term>
<term>Semiconductor quantum wells</term>
<term>Spectral shift</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7866F</term>
<term>4250H</term>
<term>8105E</term>
<term>8560J</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Puits quantique semiconducteur</term>
<term>Photoluminescence</term>
<term>Effet piézooptique</term>
<term>Déplacement spectral</term>
<term>Déplacement vers le rouge</term>
<term>Effet Stark confinement quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Direct application of biaxial strain to GaN and InGaN/GaN multiple quantum-well (MQW) structures is achieved through the use of a specially designed pressure cell. The photoluminescence of the samples is measured as a function of the applied biaxial strain. The luminescence of the GaN sample redshifts with tensile strain in a manner that agrees quantitatively with the expected shrinkage of the energy gap. The luminescence of the InGaN MQW structures shows a smaller than expected redshift for one sample, and a blueshift for another. This blueshift agrees with calculations based on the built-in electric field and the piezoelectric effect in a quantum well in which the radiative recombination is dominated by the quantum-confined Stark effect.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>62</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dependence of the luminescence energy in InGaN quantum-well structures on applied biaxial strain</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHAPIRO (N. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FEICK (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WEBER (E. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PERLIN (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YANG (J. W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>AKASAKI (I.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>AMANO (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Lawrence Berkeley National Laboratory and University of California at Berkeley, 1 Cyclotron Road, Berkeley, California 94720</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>High Pressure Research Center Unipress, ul. Sokolowska 29/37 01-142 Warszawa, Poland</s1>
</fA14>
<fA14 i1="03">
<s1>APA Optics, Blaine, Minnesota 55449</s1>
</fA14>
<fA14 i1="04">
<s1>High-Tech Research Center and Department of Materials Science Engineering, Meijo University, Tempaku-ku, Nagoya, Japan</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>R16318-R16321</s2>
</fA20>
<fA21>
<s1>2000-12-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2001 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>01-0020283</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Direct application of biaxial strain to GaN and InGaN/GaN multiple quantum-well (MQW) structures is achieved through the use of a specially designed pressure cell. The photoluminescence of the samples is measured as a function of the applied biaxial strain. The luminescence of the GaN sample redshifts with tensile strain in a manner that agrees quantitatively with the expected shrinkage of the energy gap. The luminescence of the InGaN MQW structures shows a smaller than expected redshift for one sample, and a blueshift for another. This blueshift agrees with calculations based on the built-in electric field and the piezoelectric effect in a quantum well in which the radiative recombination is dominated by the quantum-confined Stark effect.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B50H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4250H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8560J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet piézooptique</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Piezo-optical effects</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Déplacement spectral</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Spectral shift</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Red shift</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Effet Stark confinement quantique</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quantum confined Stark effect</s0>
</fC03>
<fN21>
<s1>008</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0152M000088</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 011990 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 011990 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0020283
   |texte=   Dependence of the luminescence energy in InGaN quantum-well structures on applied biaxial strain
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024